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The continuously critical turbulent boundary layer 

By W. K. ALLAN 
Royal Military College of Science, Shrivenham 

(Received 19 July 1962) 

The problem of the turbulent boundary layer in two-dimensional, incompressible 
flow, which is continuously critical, i.e. on the point of separating, over part 
of its length is solved by combination of the Buri separation criterion with 
the boundary-layer momentum equation. In  the latter an attempt is made to 
allow for transverse pressure variation and Reynolds stresses by over-estimating 
the contribution of skin friction. The Buri constant is taken to have a value of 
P = -00-04. Whereas Stratford and Townsend assumed that an initially non- 
critical boundary layer could be transformed instantaneously into a critical 
state by the application of an infinite pressure gradient a t  a point, in the present 
approach it is considered necessary to induce a critical state over a h i t e  length, 
this state then being maintained downstream. These solutions are thus not 
comparable near the starting-point of the flow, but fair agreement is suggested 
at large distances downstream, with Stratford and Townsend's theoretical 
solutions and with Stratford's experimental data. 

Comparison is also made with an ideal pressure distribution suggested by 
Stuart and the basis of optimization is discussed. It is suggested that the 
optimum flow might be similar in form to the continuously critical flow. The 
thesis that a continuously critical boundary-layer flow is ideal for large extents 
of the suction surface of an aerofoil is denied. 

The paper concludes that the Buri criterion is valid but that in this case the 
Buri constant has a value of -0.04 rather than the accepted value of -0.06. 
Previous work by the author in connexion with cascade aerofoils is justified. 
The analysis predicts theoretical minimum diffusion lengths for given pressure 
rises provided that the initial boundary layer has achieved a critical condition. 

1. Introduction 
Current interest (Allan 1961) in the theoretical limitation of the performance 

of aerofoils in cascade has led to consideration of the case of a turbulent boundary 
layer which is continuously critical, that is, at the point of separation without 
in fact separating, over the whole or part of its length. This case is taken to infer 
the shortest possible distance to achieve a desired diffusion since it also implies 
the maximum rate of diffusion without separation. 

The problem involves the prediction of a two-dimensional, incompressible 
flow, pressure distribution which, when applied downstream of a point x = xo, 
induces a continuously critical turbulent boundary layer, the layer having 
developed upstream of x = xo in such a way that it has a fully developed, tur- 



252 W .  K .  Allan 

bulent form, and has achieved a critical condition at x = xo. Stratford ( 1 9 5 9 ~ )  
and Townsend (1960) presented solutions for the case of a non-critical boundary 
layer approaching a point x = x,, where it instantaneously became critical, and 
beyond this point became continuously critical. These solutions are therefore 
comparable with the results of the present analysis at  points well downstream 
of x = xo but not near the point x = xo. 

By detailed analysis of the internal mechanism of the boundary-layer flow in 
an adverse pressure gradient, Stratford produced a two-part solution which 
was continuous in pressure and in pressure gradient, but discontinuous in 
momentum thickness. The main feature of this solution was a rapidly reducing 
pressure gradient from infinity at  x = xo, with a corresponding rapid growth of 
the boundary layer. Townsend introduced refinements to the first part of 
Stratford’s solution and predicted an initial pressure distribution that did not 
differ seriously from Stratford’s. 

In  a second interesting paper, Stratford (1959 b )  described an experiment in 
which the turbulent boundary layer on one wall of a rectangular-sectioned duct 
was brought very near to the continuously critical state by a painstaking develop- 
ment of the flow area distribution. The pressure distribution obtained was found 
to be very close to that predicted by his analysis. 

It is also of interest in this context to consider the results of an analysis 
presented by Stuart (1955) based on experimental results obtained by Hewson 
(1949), which indicated that the transverse pressure gradient across the turbulent 
boundary layer was no longer negligible when the gradient of moment thickness 
with distance exceeded a value of one in a hundred (deldx > 0.01). Stuart 
deduced the form of the pressure distribution required to induce a constant rate 
of boundary-layer growth, equal to Hewson’s limiting value, and suggested 
that this was the ‘ideal’ form, permitting the maximum pressure rise over an 
aerofoil surface without the danger of separation. 

In  this paper an alternative treatment of the problem of the continuously 
critical turbulent boundary layer is presented which, though less fundamental 
in approach than that of Stratford and Townsend, produces a solution that is 
interesting in comparison with other results, both theoretical and experimental. 

2. Analysis 
The complete momentum equation for the flow in a turbulent boundary layer is 

where H is the form factor, rw the wall stress, P is the static pressure at  y = 8 
and p is the pressure in the boundary layer at  a distance y from the wall, u’ is 
the turbulent component of the velocity at y.  The final two terms account for 
transverse pressure variation and for the Reynolds stresses, which may only be 
ignored if the boundary layer is far from separation and the wall curvature 
is small. 

A continuously critical boundary layer implies zero skin friction, rw = 0, but 
requires inclusion of the remaining terms on the right-hand side of equation (1). 



Continuously critical bmndary layer 253 

According to Spence (1956), an accurate prediction of the separation point may 
be made if a flat plate relation is assumed for skin friction and the remaining 
terms omitted, thus compensating for their loss by over-estimating rW. It is 
convenient to adopt this procedure, taking Prandtl’s (1921) relationship 

a Tw =- 
pu2 (eu/Vp’ 

where a = 0.012 = const. 
The simplified momentum equation then becomes 

which was used to predict the onset of separation in cascade blades by Schlichting 
(1959). The critical value of the form factor H is generally taken in the range 
1-8 to 2.6, so that for the continuously critical boundary layer a constant value 
of H = 2.0 might be assumed, in accordance with Stratford’s assumption in 
the second part of his solution. 

In  order to solve equation (3) with a non-zero value of a, it  is necessary to 
introduce a separation criterion such as that of Buri (1931), 

where I? is a constant for a critical turbulent boundary layer. Carter (1959) 
indicated that the Buri parameter was the basis of a variety of limiting diffusion 
factors in current use in cascade design and its validity has therefore been 
demonstrated by wide application. Experimental data on diverging channels 
obtained by Nikuradse (1929) indicated the critical value of I? to be of the 
order of -0.06. 

From equations (3) and (4), it  may be shown that 

e/eo = (u/u,)n, ( 5 )  

where n = (all?) - ( H  + 2) = a constant. 

applying the condition that U = Uo a t  x = x,, leads to the solution 
Eliminating the momentum thickness from equation (4), integrating, and 

where Roo = UoS,/v, and x, is the equivalent length of constant-pressure tur- 
bulent boundary layer required to develop a momentum thickness Bo. 

The relation between 8, and xo may be taken from Goldstein (1938) or Schlich- 
ting (1955) to be 

where R, = Uoxo/v, which, when substituted into equation (6) produces 

6, = O.036xoR&*, (7)  
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Taking a = 0.012 and H = 2-0, the choice of Buri constant remains. The 
Nikuradse value I’ = - 0-06 leads to 

(X/Z~) - 1 = 0*0523[( U/U0)-5 - 11. (9) 

This solution was found to compare unfavourably with Stratford’s results 
and consequently a value of I? = - 0.04 was considered, when 

(x/x0) - 1 = 0*0766[( U/Uo)-5’125 - 11. (10) 

These solutions are compared with Stratford’s and with Stuart’s theoretical 
results, and with Stratford’s experimental data in the following sections. 

3. Initial flow condition 
At this point it is pertinent to comment upon the amendment in this paper 

of the original problem examined by Stratford and Townsend. The latter assumed 
that the boundary layer would be capable of changing instantaneously from a 
non-critical state to a critical condition and this led them to prescribe an infinite 
pressure gradient at x = xo, inducing an infinite rate of boundary-layer growth 
at that point. In  the present analysis the upstream flow is assumed to vary in 
such a way that the boundary layer has become critical, but is unseparated, at 
x = xo, this condition being achieved over an unspecified length. The instan- 
taneous change of boundary-layer condition is evidently an extreme case in the 
present analysis, when the length to achieve the critical condition is reduced to 
zero. The theoretical pressure gradient required is then infinite at the point 
x = xo. In  practice such a gradient is only achieved in flow around a sharp corner 
or through a shock, and in general would involve the danger of separation of the 
boundary layer, with the exception of a limited range of flow systems in which 
it might be possible to induce a weak shock, when separation might be avoided. 
It is suggested therefore that an instantaneous change of boundary-layer 
condition is, in general, an impracticable requirement and that the critical 
condition must be achieved over an arbitrary, finite length. 

Further it is suggested that if the pressure distribution predicted by the 
present analysis were applied to a turbulent boundary layer that was not 
initially critical, then the layer would not immediately approach separation 
but might become critical at some point downstream, becoming continuously 
critical beyond that point. In  this context, the present analysis predicts a safe, 
practical solution. 

An exception to the previous argument is the case of a continuously critical 
turbulent boundary layer over the whole of the suction surface of an aerofoil, 
considered by the author in 1961. Since, near the leading-edge stagnation point, 
the boundary layer is of negligible thickness, a very large pressure gradient may 
be applied near that point without risk of separation, provided that the gradient 
is rapidly alleviated downstream of the stagnation point. In  his previous work 
the author assumed I? = - 0.06 and deduced a velocity distribution 
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where x is the surface distance aft of the leading edge stagnation point, c the 
chord length of the aerofoil, U the local free stream velocity and U2 the exit 
velocity from the cascade. Had a value of r = - 0.04 been employed, then the 
velocity distribution would have been 

and it appears that the solution was not very sensitive to variation of the Buri 
constant. 

up2 = (x/c)-1/5125, (12) 
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FIGURE 1. Comparison of pressure distributions : -, Stratford’s theory; ---- , Strat- 
ford’s experimental data; ---, present theory with r = - 0.04; ---, present theory 
with = - 0.06; -.-, Stuart’s theory. 

4. Comparison with Stratford’s theoretical solution 
In view of the disagreement in initial boundary-layer condition at x = xo, the 

present solution cannot be expected to compare favourably with that of Stratford 
immediately downstream of x = xo. It might be anticipated, however, that the 
solutions should become asymptotic at a large distance downstream from the 
starting-point, where the influence of the starting condition would be reduced 
to a lesser proportion of the pre-history of the layer. 

The solutions are compared for pressure distribution, pressure gradient 
variation and boundary-layer growth in figures 1, 2 and 3 respectively. Com- 
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FIGURE 2. Distribution of pressure gradients: ~ , Stratford's theory; -.-, Stuart's 
theory; --- , present theory with r = - 0.04; ---, present theory with l? = - 0.06. 
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FIGURE 3. Development of momentum thickness: -, Stratford's theory; ---- , Strat- 
ford's experimental data; - .-, Stuart's theory; --- , present theory with I' = - 0.04 ; 
--- , present theory with I? = - 0.06. 
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parison of the pressure distributions suggests that the normally accepted value 
of I’ = - 0.06 is invalid for the continuously critical flow, though not necessarily 
for a flow in which the boundary layer approaches a critical value at a point, 
In  the latter case the value of the Buri criterion changes very rapidly near 
separation so that variations of the Buri constant in the range - 0.04 to - 0.06 
would make little difference to the estimated location of the separation point. 
The predicted pressure distribution for I? = - 0.04 is in good agreement with that 
of Stratford for values of x/xo > 1.3. A very rapid alleviation of pressure gradient 
is associated with Stratford’s infinite initial value while the present analysis 
suggests a more gradual alleviation of the finite initial pressure gradient. For 
values of x/xo > 1.4, pressure gradients for both I? = -0.06 and F = -0.04 are 
in good agreement with Stratford‘s values. 

The higher initial pressure gradients of the present analysis are reflected in 
the growth of momentum thickness in figure 3, which also indicates the dis- 
continuity in Stratford’s solution a t  x/xo = 1.6 where C, = 4/7. This diagram 
demonstrates the excessive boundary-layer growth suggested by the present 
analysis for r = -0.06 and indicates the improvement in the comparison for 

Townsend’s analysis suggested a pressure distribution that was slightly 
steeper than Stratford’s immediately downstream of x = x, but which was 
substantially in agreement with Stratford’s result. 

Both Stratford‘s theory and the present solution suggest that the pressure 
distributions of figure 1 are insensitive to initial Reynolds number R,, the latter 
disappearing in the present approach, and in Stratford’s solution C, cc (Ro)l/15. 

r = -0.04. 

5. Comparison with Stratford’s experimental data 
Stratford‘s experiment produced a flow that was almost continuously critical 

for 1 6 x/xo < 2-0, though not exactly critical even by Stratford’s assessment, 
which compared two integrated terms of the momentum equation which are 
not necessarily equal for zero friction flow when Reynolds stresses and transverse 
pressure gradients, which were in fact detected, are significant. Nevertheless, 
the experiment was highly successful in view of the difficulty incurred by the 
use of a low aspect ratio flow surface and the consequent danger of corner 
separation which required the application of corner suction. The results of this 
experiment provide an invaluable guide in the evaluation of theoretical results. 

The experimental pressure distribution was in fair agreement with that pre- 
dicted by Stratford and Townsend. Unfortunately, a short relief of pressure 
gradient occurred near x/xo = 1.3 and beyond this point the flow became in- 
creasingly further from separation. Thus a direct comparison of pressure dis- 
tributions in the region of greatest interest, 1.3 6 x/xo 6 2.0, is not possible but 
it might be suggested that the present prediction for r = - 0.04 appears reason- 
able in this region, bearing in mind that the two curves are not comparable near 
x = x,. 

The short relief in the experimental pressure distribution is reflected in the 
growth of momentum thickness in figure 3, where it might be anticipated that, 
had the boundary layer been truly critical, the momentum thickness would 
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have been greater than that measured, and, therefore, would have been nearer 
to the predicted line for I? = -0.04. Some evidence for this proposition was 
provided by Stratford, who found that by a small increase in divergence of the 
channel an increase in displacement thickness, and also presumably momentum 
thickness, of 10 yo could be achieved without causing backflow, with no appreci- 
able alteration of the pressure distribution, which confirms the statement that 
the flow as not exactly critical. In  figure 3 it is evident that an increase of 10 yo 
in the experimental momentum thickness would produce an excellent correlation 
between this data and the predicted growth for I? = - 0.04. 

xlc 
FIGURE 4. Comparison with Stuart's ideal pressure distribution on the surface of an 

aerofoil: -.-, Stuart's theory; ---, present theory with I? = - 0.04. 

6. Comparison with Stuart's theoretical solution 
Comparative data from Stuart's analysis is presented in figures 1, 2 and 3 for 

the case of diffusion in a duct, and in figure 4 for diffusion on the surface of an 
aerofoil downstream of a point at a distance of 10 % of chord behind the leading 
edge. In the former case Stuart's diffusion rates appear to be considerably less 
than those achieved in Stratford's experiment. In the case of the aerofoil, the 
present approach suggests a velocity distribution defined by 

g-5125  - 1 = k(5 - I), (13) 
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where V is the ratio of the local velocity to the trailing edge velocity, 5 the ratio 
of the distance aft of the leading edge to the chord length, and k a constant 
determined by the velocity at and the location of the beginning of diffusion. 
The Buri constant has been taken to be I’ = - 0-04. For the case considered in 
figure 4, k = 1.088. Again it is found that Stuart’s diffusion rates were compara- 
tively low. 

This comparison might have been anticipated in view of the definition of 
Hewson’s limiting value of d8/dx = 0.01. The suggestion that transverse pressure 
gradients would only begin to become appreciable if this limit were exceeded 
implies that larger rates of boundary-layer growth, and therefore higher diffusion 
rates, would be achieved before the onset of separation. Stuart further suggested 
that the simplified momentum equation (3) became increasingly inaccurate 
beyond Hewson’s limiting value, that is, near separation. This appears to 
contradict the experience of Spence, mentioned earlier. 

Stratford also examined the theory of von Doenhoff & Tetervin (1943) when 
applied to the problem of a continuously critical turbulent boundary layer, and 
found that the theory was in marked disagreement with his experimental 
results. 

7. The ideal pressure distribution 
It is evident that an ‘optimum’ flow should satisfy the requirement that the 

rate of increase of momentum thickness (or energy thickness) with change of 
pressure should be a minimum. Considering the range of diffusion flows bounded 
by the extreme cases of constant pressure flow on the one hand and maximum 
diffusion flow on the other, for the former (dC, = 0) the gradient dO/dC, has an 
infinite value, whereas for the latter dB/dC, will be finite. It might be anticipated 
therefore that the optimum flow will be similar to the continuously critical flow, 
involving high initial pressure gradients. This conclusion is confirmed to some 
extent by experimental results presented by Schubauer & Spangenberg (1960). 
Stratford observed that the momentum equation was inconclusive in this 
argument due to the opposing behaviour of the skin friction and pressure 
gradient terms, but suggested that the energy equation indicated a minimum loss 
in the case of continuously critical flow. The theoretical evaluation of the 
problem depends upon the complex relationship between skin friction and pres- 
sure gradient and may also involve the influence of transverse gradients and 
Reynolds stresses. 

Stuart defined the ‘ideal’ pressure distribution over the surface of an aerofoil 
as that which would induce the maximum diffusion over that surface, that is, 
a continuously critical boundary-layer flow. Such a flow might usefully be 
applied near the trailing edge of the suction surface of an aerofoil, as envisaged 
by Stratford, though in practice a safety margin might be desirable to avoid 
the danger of separation occurring instantaneously over a large portion of the 
surface in the stalled condition. However, the primary requirement of the 
aerofoil is that it should develop a lift force with the greatest possible efficiency, 
which may be represented by lift to drag ratio. Although the over-all Wusion 
obtained over the surface of an aerofoil on which the flow is continuously critical 

17-2 
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for a large part of the length is very high, the very rapid reduction of suction 
pressure induces a low lift coefficient in conjunction with a maximum rate of 
boundary-layer growth with distance, and therefore a low lift-to-drag ratio. 
This argument was demonstrated by Allan (1961), when it was shown that 
optimum velocity distributions induced critical boundary-layer conditions at  
or near the trailing edge in association with a constant velocity over the forward 
portion of the surface. 

I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 . 0.6 0.7 

P - P a  c. -- 
p -  4pu: 

FIGURE 5. Variation of momentum thickness with pressure coefficient: -, Stratford’s 
theory; ---- , Stratford’s experimental data; ---, present theory with I’ = - 0.04. 

8. Conclusions 
The problem of the generation of a continuously critical turbulent boundary 

layer downstream of a point at which critical conditions have been achieved has 
been analysed by a method which, though less fundamental than those of 
Stratford and Townsend, produces a solution that has the advantage of a con- 
tinuous development of momentum thickness. Though direct comparison is 
not possible, agreement with Stratford‘s theoretical solution and with his 
measured data is suggested in a region well downstream of the starting-point 
x = xo. 

The validity of the Buri criterion for separation has been demonstrated, 
though for the flow considered it was found that the Buri constant, I?, should be 
taken to be - 0.04 rather than Nikuradse’s value of - 0.06. It was also suggested 
that this modification had little effect on the velocity distribution for a con- 
tinuously critical turbulent boundary layer on the suction surface of an aerofoil, 
previously discussed by the author. 
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In  a discussion of Stuart's analysis, which did not imply a critical boundary 
layer, and could not therefore predict maximum diffusion rates, it was suggested 
that the optimum pressure distribution would induce the minimum gradient 
of momentum or energy thickness with flow velocity or pressure, and that the 
form of this distribution would be similar to that for continuously critical flow. 

The analysis presented in this paper provides a simple means of estimation 
of minimum diffusion lengths for desired pressure rises provided that the boun- 
dary layer is brought to a critical condition in a short, but finite distance. In  
practice the achievement of these lengths must be complicated by the problems 
of three-dimensional flow, but Stratford has show that the two-dimensional flow 
is unexpectedly stable. 

The author is indebted to his colleagues at the Royal Military College of Science 
and to Dr B. S. Stratford for their valuable criticism and advice in the preparation 
of this paper. 
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